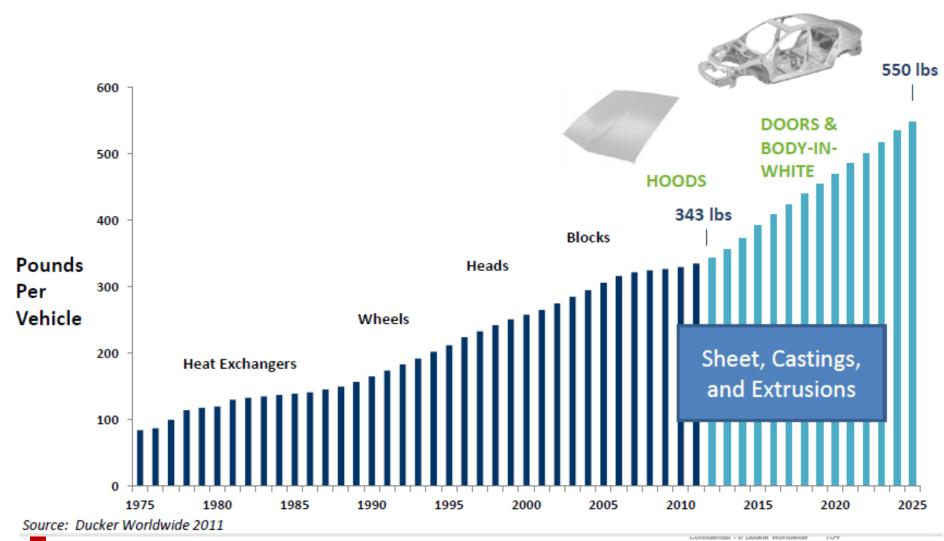


VIAMI INTERNATIONAL INC.

High Integrity Diecasting for Structural Applications

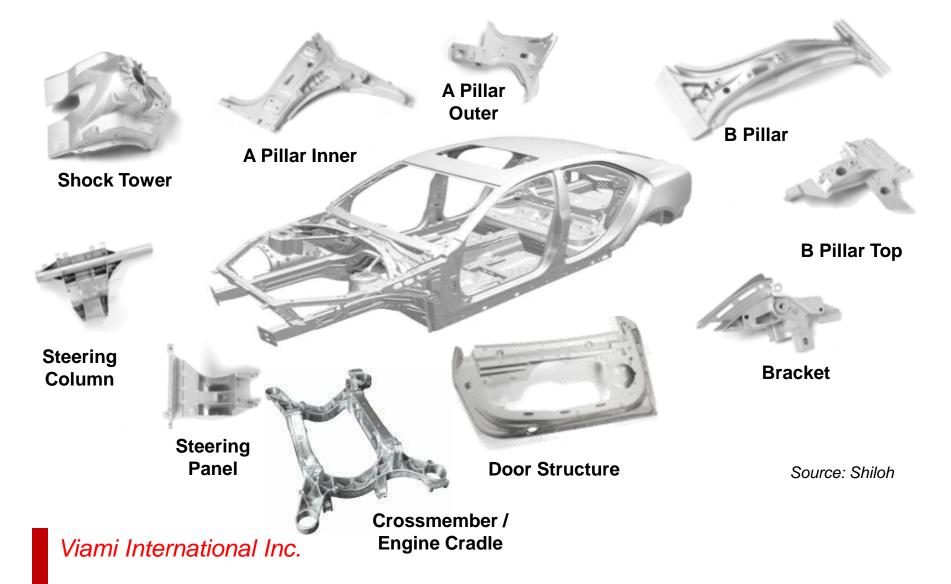
A holistic approach to improved die casting quality

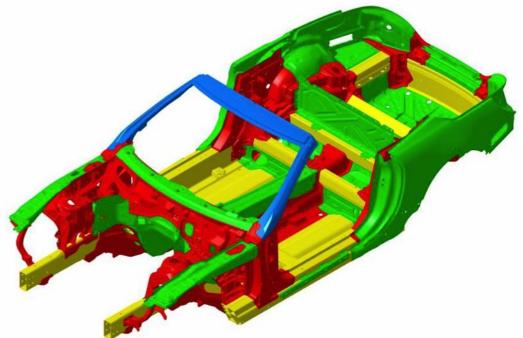

iMdc meeting, WPI, Worcester, MA December 12, 2013

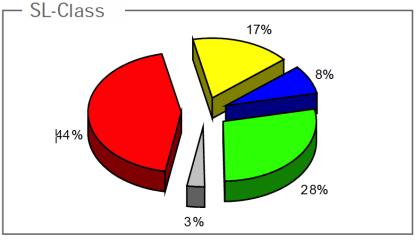
VIAMI INTERNATIONAL INC.

Services offered

- Assistance in material, process/technology selection, implementation and optimization for specific application
- Assistance in sourcing metal/process/castings (supplier benchmarking and selection, supplier development)
- Assistance with part / system development, specifications, prototyping, testing, etc.
- (International) market development
- > Trainings, seminars, workshops
- Project management (time, cost, quality)


Aluminum content in automotive


Viami International Inc.


Structural aluminum die castings

- ... are being used for
- Saving weight & costs replacing
 - Heavier materials
 - Thicker walled parts
 - Steel/AI assemblies and stampings
 - Higher cost materials and processes
- For performance increases
- For pressure tight parts

BIW structures: It usually starts in very high-end vehicles before it spreads into high volume cars – example of Mercedes SL

- Cast aluminium
- Aluminium sheet metal
- Others
- Steel
- Aluminium profiles

•World premiere in January 2012 - Launch March 2012 •Aluminium and FRP detachable body components

•Weight advantage of approx. 110 kg versus conv. steel design

Source: Daimler AG, Dr. Lutz Storsberg, Mercedes-Benz Cars, Structural Symposium Bühler AG, Hamilton, Canada, October 1, 2013

BIW structure Mercedes SL

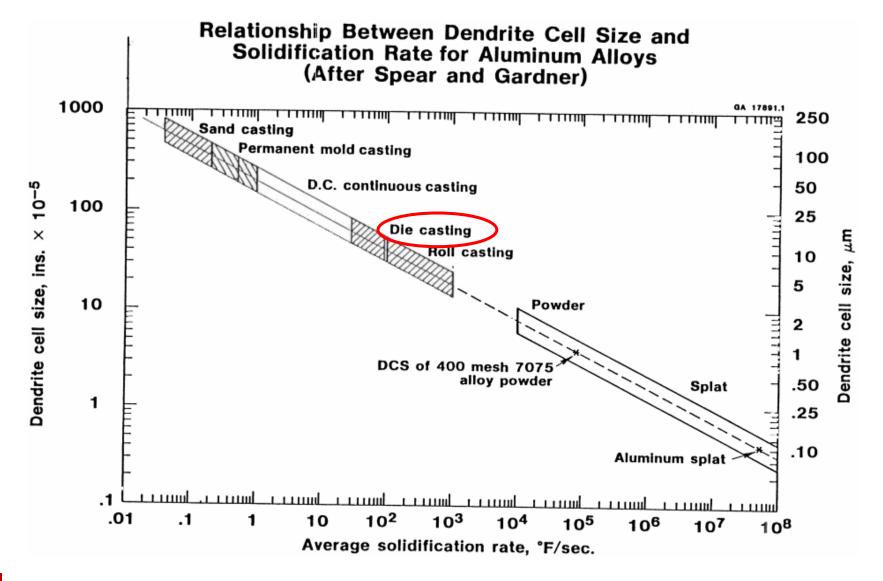
34 Vacuum-HPDC parts2 low pressure diecasting partsTotal weight of castings:110 kg

Source: Daimler AG, Dr. Lutz Storsberg, Mercedes-Benz Cars, Structural Symposium Bühler AG, Hamilton, Canada, October 1, 2013 *Viami International Inc.*

Suspension parts

Yamaha motorbike main and seat frame in Silafont[™] 36 in T5

- BRP part produced by AMT in Silafont 36 / Aural-2
- replaces two gravity cast parts.
- Significant reduction in machining costs



Why High Pressure Die Casting?

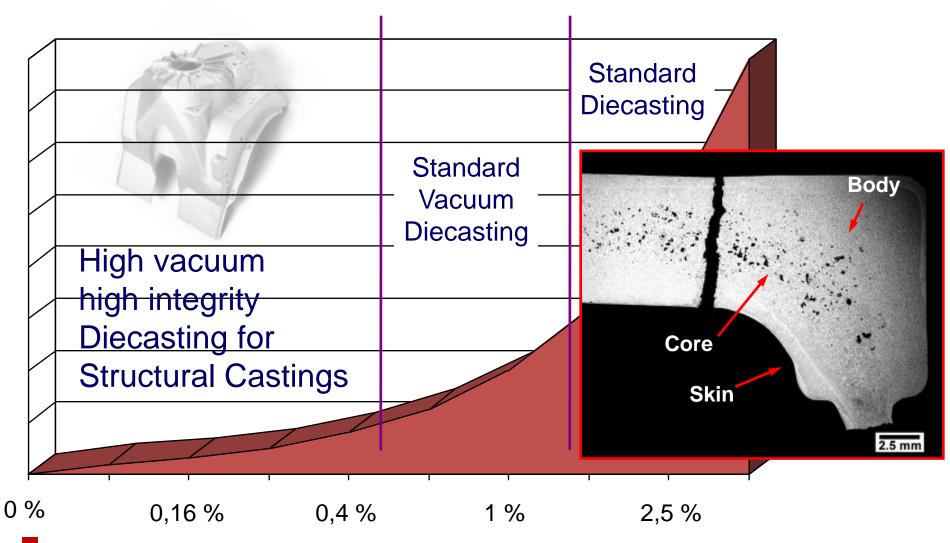
Advantages

- Lowest Cost mass production casting process
- Very easy to automate
- Very high dimensional tolerances are possible
- Very thin walls / complex shapes possible
- Excellent surface finish
- Very high solidification rate
- "Skin" effect can give very good fatigue performance

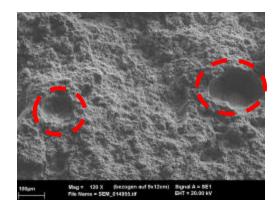
The effect of freezing rates

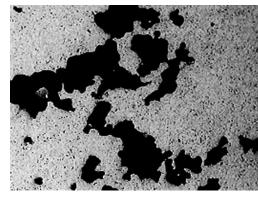
High Pressure Die Casting

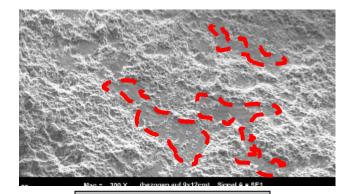
Disadvantages

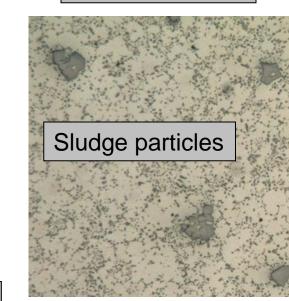

- Very expensive tooling need high volumes to justify
- Usually high amounts of porosity / defects and
- Typical HPDC alloys are secondary (high Fe alloys to avoid die soldering)
- which do not allow good mechanical properties and fatigue life!

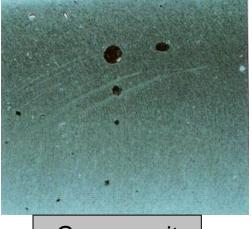
Fatigue life of Al castings*


- Strongly depends on casting defects and inhomogeinities – those strongly reduce fatigue crack initiation life
- Absent of defects, crack initiation occurs at fatigue sensitive microstructural constituents.
- Porosity
- Oxides
- (Si, Fe, etc. rich) intermetallic particles
 ...
- Maximum defect size determines fatigue life


 *) See also Modern Casting Article "Predicting the Fatigue Life of Aluminum Castings (May 2013) based on research paper 13-1342 from P. Jones & Q. Wang (GM) presented at the 2013 AFS Metalcasting Congress
 Viami International Inc.

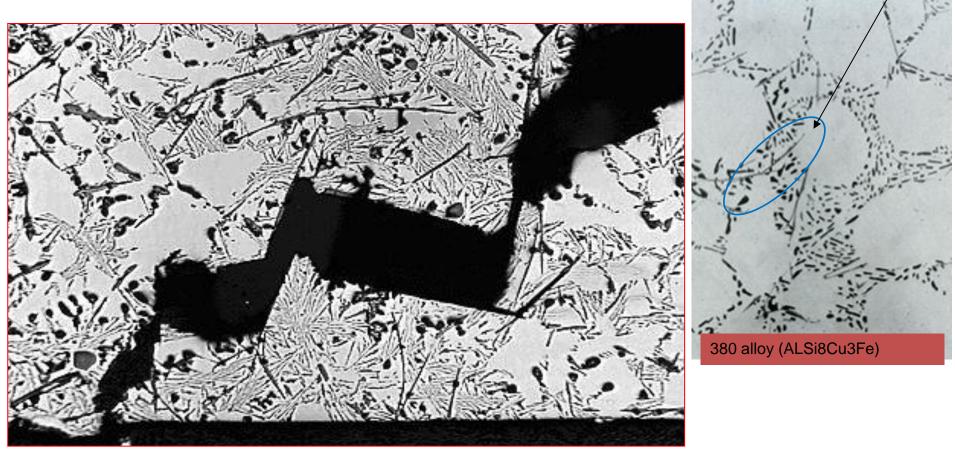

Porosity in High Pressure Die Casting


Typical Diecasting Defects



Oxide inclusions

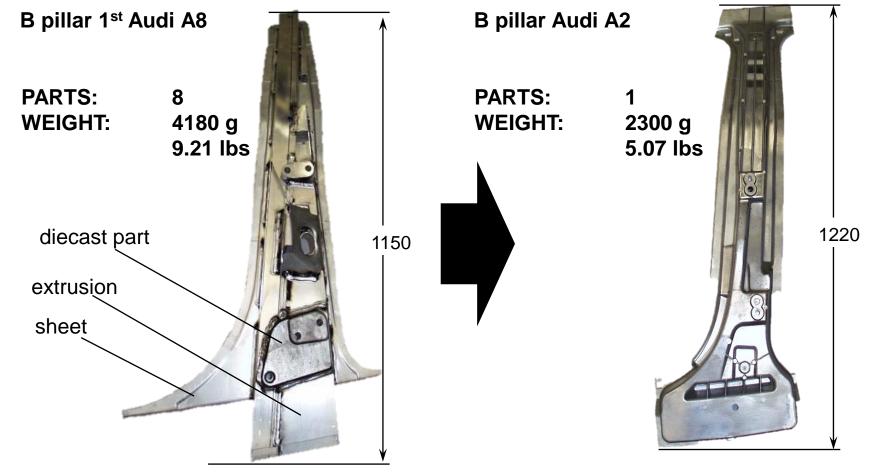
Gas porosity


Shrinkage porosity

Other inclusions, etc.

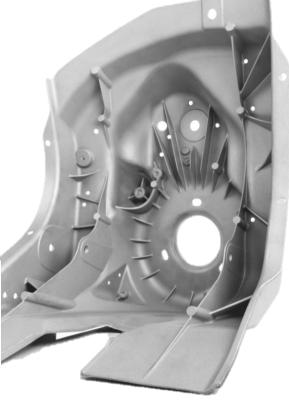
Al_5 FeSi NEEDLE-LIKE PHASE

Very high Fe: An extreme example


AI5FeSi platelets

Requirements for structural high integrity aluminum die castings

- Weight reduction
- Part integration
- High mechanical properties
- Crash performance
- Corrosion resistance
- Weldable / heat treatable (blisters!)
- Surface quality (esp. joining / contact surfaces)
- Distortion free with tight tolerances
- Pressure tightness


Example mechanical properties: YS 100/120MPa UTS 180MPa EI ≥10% Bending ≥50/60° angle (d=2mm) Requirements for structural high integrity aluminum die castings Example: Part integration and weight reduction

Requirements for structural high integrity aluminum die castings Example: Part integration and weight reduction BMW X5 shock tower

- Very low level of entrapped gasses allowing for subsequent heat treatment
- BMW part is 40% weight of traditional steel part and comparably priced.
- High strength and ductility

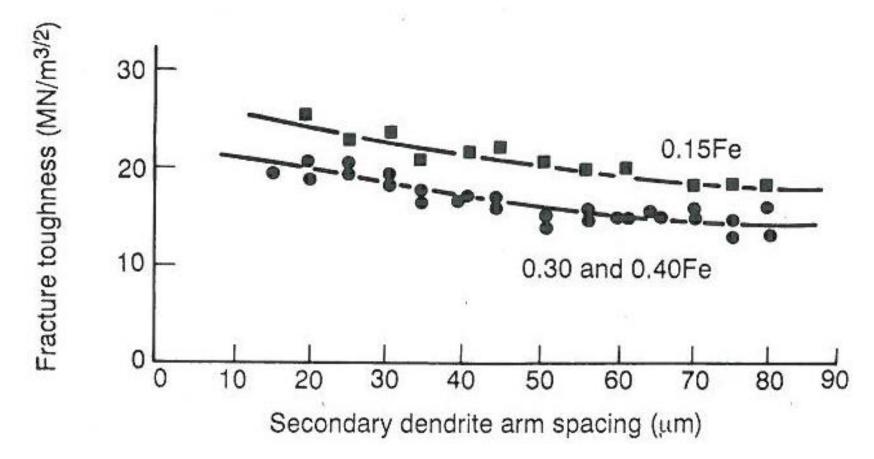
Before: required 5 welded steel stampings weighing 18 lbs.

After: One piece, 7.2 pounds or 40% of traditional steel fender well

Requirements for structural high integrity aluminum diecastings

Crash performance: Static loading of 25 lb. drive shaft housings illustrates Mercalloy®'s far superior energy absorption

Alloy: XK 360 with 1.3% max Fe One sudden, fast-propagating failure mode [in less than 100 milliseconds]



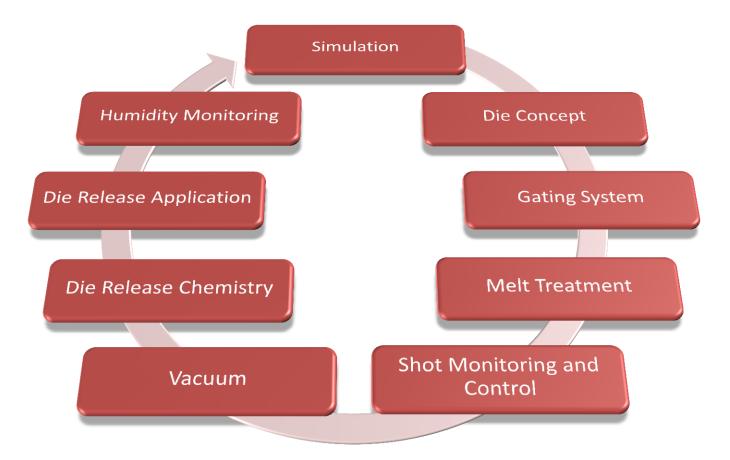
Alloy: **Mercalloy® 367** - Crush-like failure never splitting completely – Honorable Mention in 2010 NADCA Casting of the Year Competition

Viami International Inc.

Courtesy of MERCURY MARINE, a division of BRUNSWICK CORPORATION

Fracture Toughness depends on Fe content & dendrite arm spacing

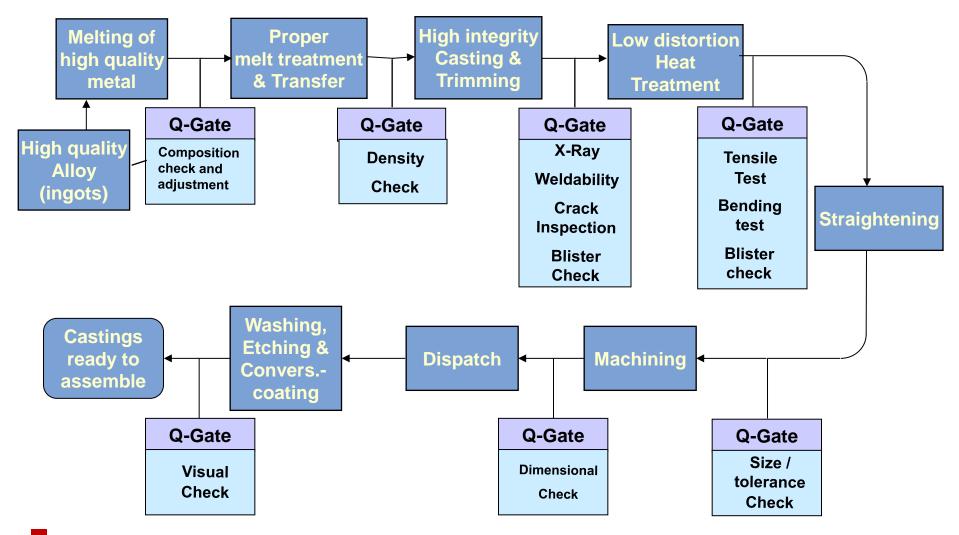
Source: John Campbell: CASTING [1991 edition], page 266, figure 8.3. Viami International Inc.


Factors affecting die-casting quality

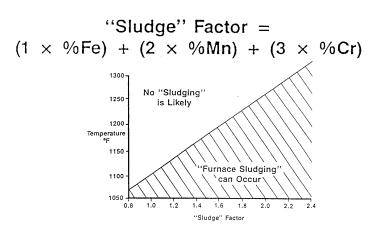
- Alloy composition and impurities
- Metal quality (oxides, hydrogen content, sludge, dross, other inclusions)
- Metal temperature, treatment, transfer, delivery to shot sleeve
- Die-casting machine (size, type, equipment)
 - Clamp/platen: clamp pressure/platen programmable
 - Shot end: shot speeds/profile, pressure, closed loop control
- Monitoring/Control system:
 - for all critical process parameters / full machine diagnostics
 - graphical user interface (HMI) provide SPC

Factors affecting die-casting quality

- Shot tooling:
 - Cold chamber (proper size, temperature control, etc.)
 - Shot tip (with ring to create seal and internal cooling)
 - Plunger lube (type and application)
- Die-casting dies / gating design / overflow design
- Part design (wall thickness, changes, etc.)
- Die temperature
- Lubricant type, application and efficiency
- Vacuum system: level & type / cavity pressure / control
- Part extraction and quench system
- Trimming
- Heat treatment and other process steps


A "holistic" approach is needed! Complete Die Casting Process Technology

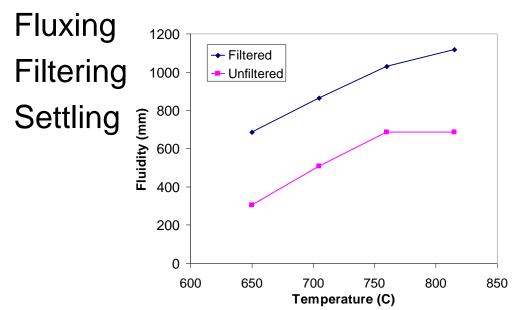
Viami International Inc.


Courtesy of Magna BDW GmbH & Co. KG, Markt Schwaben, Germany

Typical process chain for structural high integrity die castings

Items to pay attention to:

- Oxides
- Hydrogen
- Sludge
- Dross
- Other inclusions


Viami International Inc.

 Proper temperature control of melt

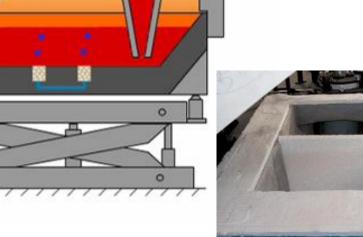
 Avoiding excessive turbulences/splashing

Measures to be taken:

Degassing

Any metal "waterfall" in the metal transfer will generate oxide inclusions!

Examples: StrikoWestofen dosing

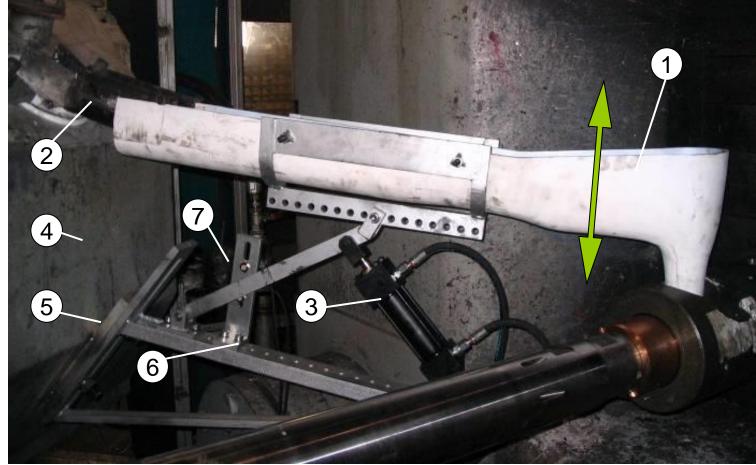

furnace

Pressurized dosing furnace with transfer launder and integrated porous plugs for continuous degassing.

WESTOMAT

Støtek DosoTherm

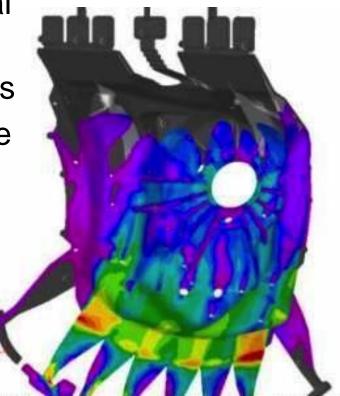
Un-pressurized dosing furnace with integrated metal filter, featuring Støtek patented pump technology.


Viami International Inc.

0

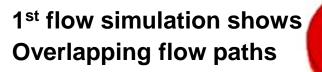
Melt transfer into the shot sleeve: Swivel Launder

...has developed the design of the launder and the swivel jig in order to achieve a high melt quality level for high integrity diecastings.


Ceramic launder (1); Furnace spout (2); Hydraulic cylinder (3); Holding furnace (4);
 Swivel jig height adjustment (5); Mechanical swivel jig (6); Position sensors (7)

Viami International Inc.

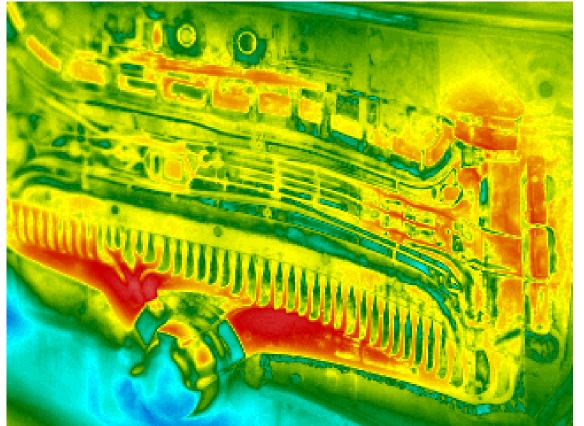
Courtesy of Magna BDW GmbH & Co. KG, Markt Schwaben, Germany


Product Development

- Component Design
 - Robust designs meet both functional & manufacturing requirements ...
 - ...and lead to higher quality products
 - Design engineers should collaborate with casting engineers in the early stages of product development
- Gating and Die Design
 - Simulation is a must
 - Gating and overflow (including vacuum gating) design is important
 - Utilization of gates along nearly entire front edge of part

Numerical simulation

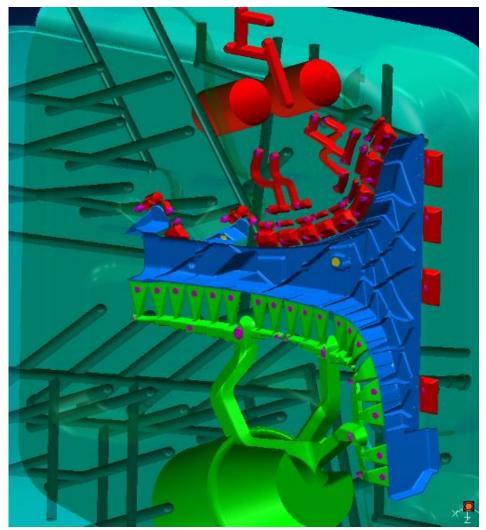
- Runner design optimization provide a continuous flow path into and through the part
- Casting defects prediction
- Temperature distribution at surface of the cavity
- Velocity field in the liquid metal during die filling


Viami International Inc.

Optimized runner design eliminates entrapped air

Die design, thermal balance and process control

Process Control – Die Temperature



- Real-time cycle-to-cycle die surface temperature monitoring with cycle-to-cycle adaptive control
- Read and store the die skin temperature at each cycle of the machine. It can monitor the die (outlined by laser pointers) with an IR camera mounted in a protective stainless steel case.
- High/Low limits can be set to alert the robot or unloading device to segregate a casting with an out of spec reading.

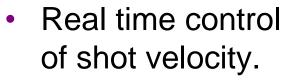
Viami International Inc.

Courtesy of Visi-Trak Worldwide, LLC https://www.diecasting.org/imis/scriptcontent/transactions/details.cfm?ID=13041

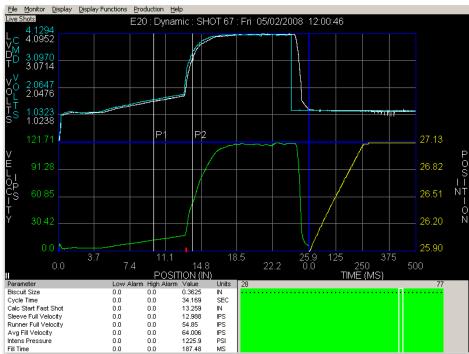
Die design and sealing

Viami International Inc.

Moving half of die with gating system (green) and overflow/vacuum system (red) Part contour (blue) position of ejector pins (purple) cooling/heating systems (dark green)


O-Rings are used extensively on tooling to prevent leaks

Thermal isolation plates are used to improve warm-up time


Multiple short hot oil zones are utilized to control die temperature

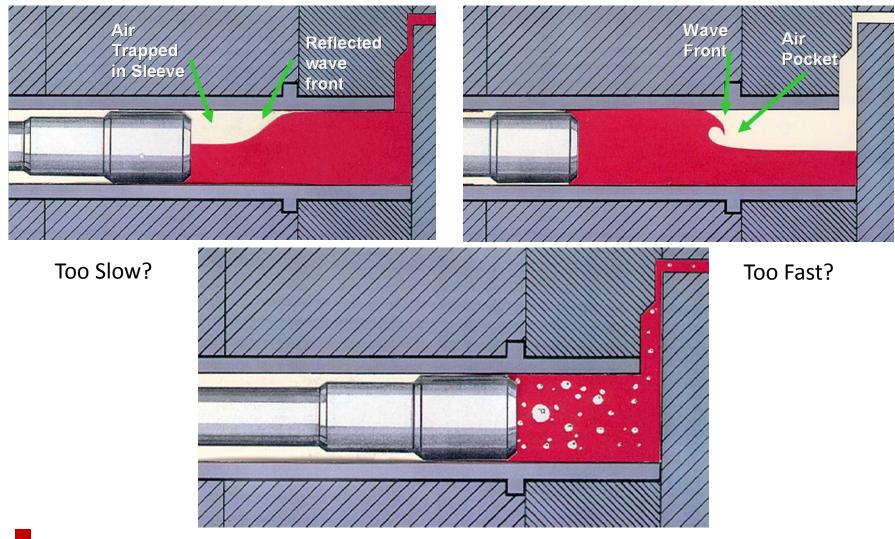
Shot monitoring and control

- Monitor key variables
- Derive key process parameters
 - Casting characteristics are calculated and reported.

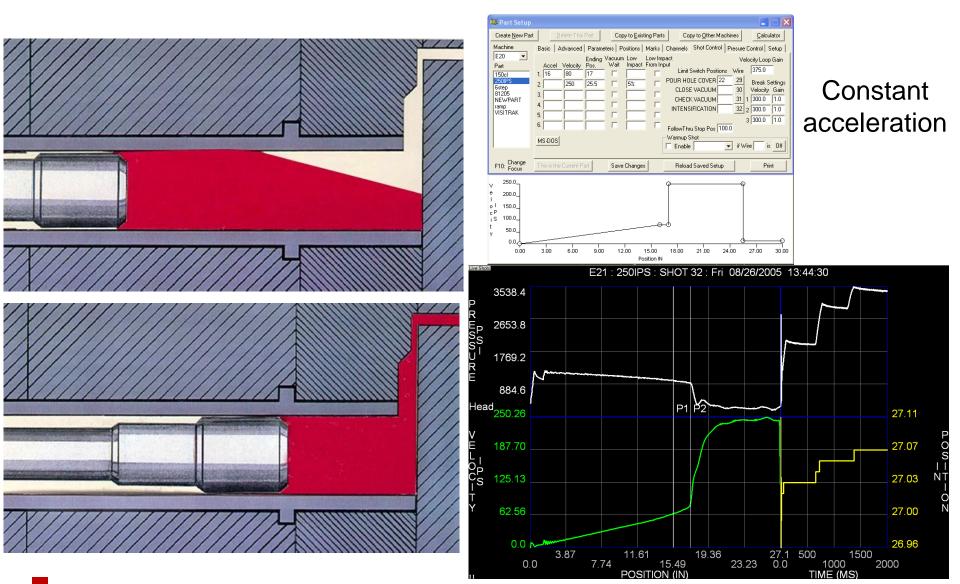
Produce Precise and Repeatable Injection Control

- Design experiments to understand relationships and causes of variation
 - Accrue production information including scrap and downtime data

Viami International Inc.


time shot control system

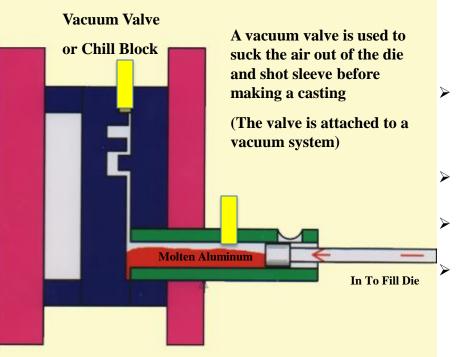
Visi Trak


Courtesy of Visi-Trak Worldwide, LLC

http://www.visi-trak.com/Media/Vann_Proof_withAd.pdf

Example: The slow shot

Example: The slow shot

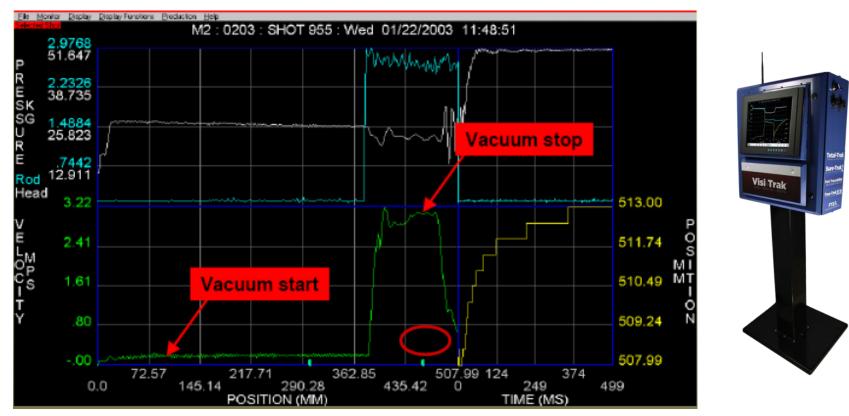


Viami International Inc.

Courtesy of Visi-Trak Worldwide, LLC

High vacuum die casting

Why vacuum diecasting:



- Vacuum levels in the die cavity and shot sleeve below 50 millibar (ideally 2 stage vacuum system)
- Reduced cavity gases from the shot sleeve and die.
- Reduced porosity levels
- Reduced wall-thickness
 - Ability to produce otherwise unsuitable parts in aluminium die casting

Main differences in equipment/processes are in: Vacuum valve type, vacuum control system, and vacuum monitoring approach

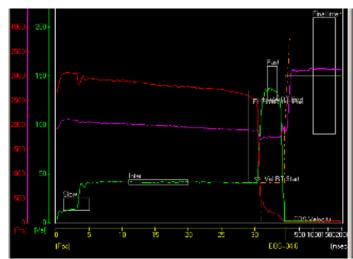
High vacuum die casting

Advanced monitoring techniques used to ensure proper vacuum level during the casting process, proper vacuum response & vacuum evacuation time and to detect vacuum leaks, vacuum blockages as well as excessive moisture

Viami International Inc.

Courtesy of Visi-Trak Worldwide, LLC

High vacuum die casting – valve types


Mechanical Valves

<u>Pros</u>

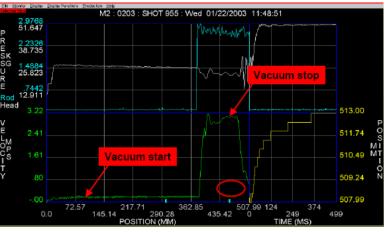
- Vacuum pulled through entire shot
- Does not require expensive controller
- Easy to remove and clean
- Biscuit size variation is not an issue

<u>Cons</u>

- Smaller valve cross sectional area – less vacuum
- Potential for metal to fill evacuation line if metal does not completely fill
- Valves are expensive

<u>Suppliers</u>

- Castool
- Provac/VDS
- Fondarex
- ...



High vacuum die casting – valve types

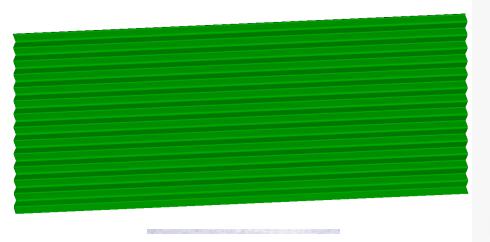
Hydraulic/ Pneumatic vacuum valves

<u>Pros</u>

- Allows for larger valve (cross sectional area up to 400 square mm)
- Does not rely on metal to close valve (no issues with startup)
- Usually less down time (no metal shot into valve)

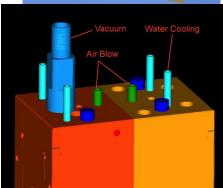
<u>Cons</u>

- Requires better control system
- drawing vacuum through entire shot is more difficult
- Does not account for biscuit variation (requires very stable process)
- Requires hydraulic cylinders within tool


<u>Suppliers</u>

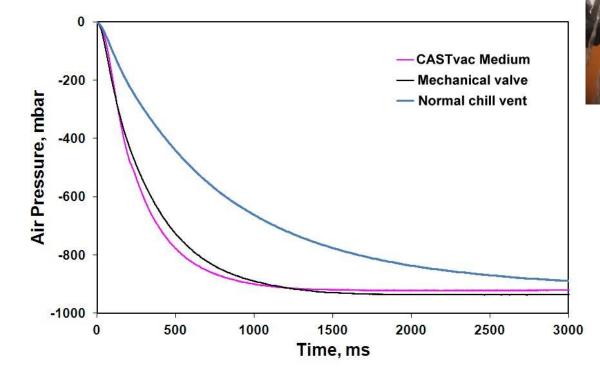
- MFT
- Buhler/ Prince

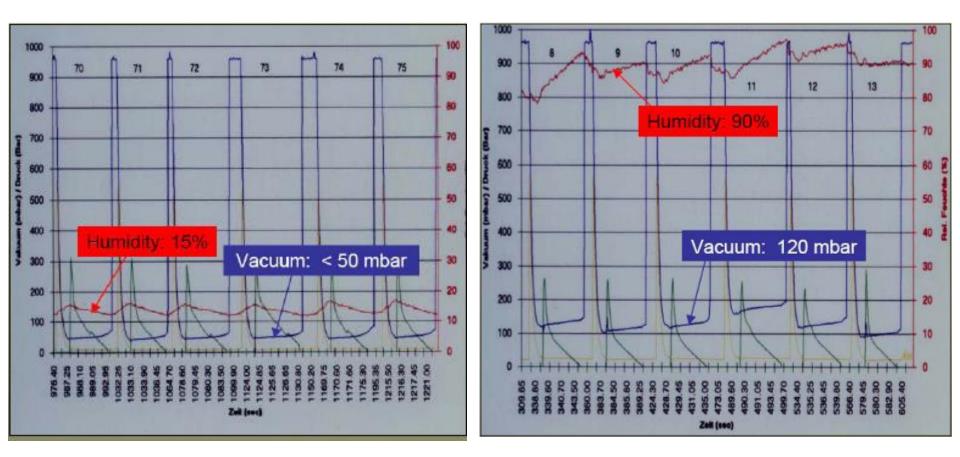
High vacuum die casting – valve types New chill vent/valve approach CASTvac



Chill face: 100mm x 100mm requires 80tonne locking force; Increased by 4 times: 400mmx100mm requires 320tonne locking force

In production in Nissan Australia for 6 years

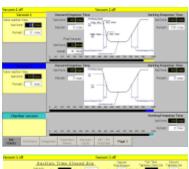

3D (CASTvac) 4 times of chill face but only 80tonne force


High vacuum die casting – valve types

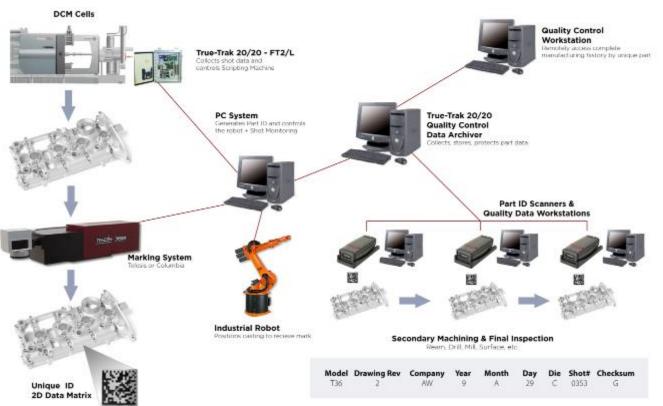
Efficiency comparison with bench test

Vacuum and moisture are not compatible!

Complete process control and visualization


Example: Total-Trak HMI

- Monitor & control the entire automated machine cell & periphery
- Easy set-up restore saved jobs in seconds.
- **Complete I/O Diagnostics** for a comprehensive view.
- Integrated shot control with the True-Trak20/20[™] or Sure-Trak2[™].
- Ladder logic display options available.



Part traceability

- Proper identification of each part for customer and quality improvement
- Collect, store, archive, recall and download all process information

Viami International Inc.

Courtesy of Visi-Trak Worldwide, LLC

Part traceability

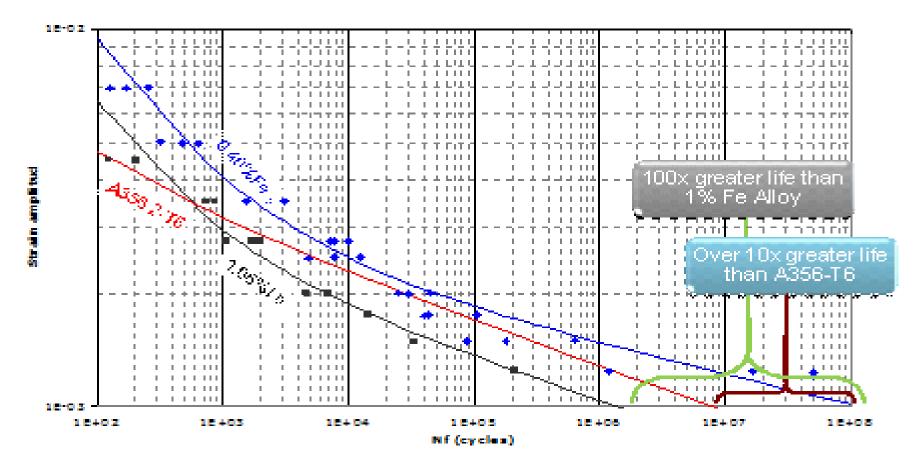
- Automatically collect and archive valuable process data for each part (automatic back-up, compress and store data)
- Uniquely identify each part
- Capture and link important secondary process (heat treatment, machining, etc.) and test data.
- Analyze your data to
 - Determine cause of variation

Viami International Inc.

Low Fe (<0.25%), Mn to beat die soldering; low Cu; Sr

Al-Si alloy family: Al + 4-12%Si +0-0.6%Mg, Mn, Fe

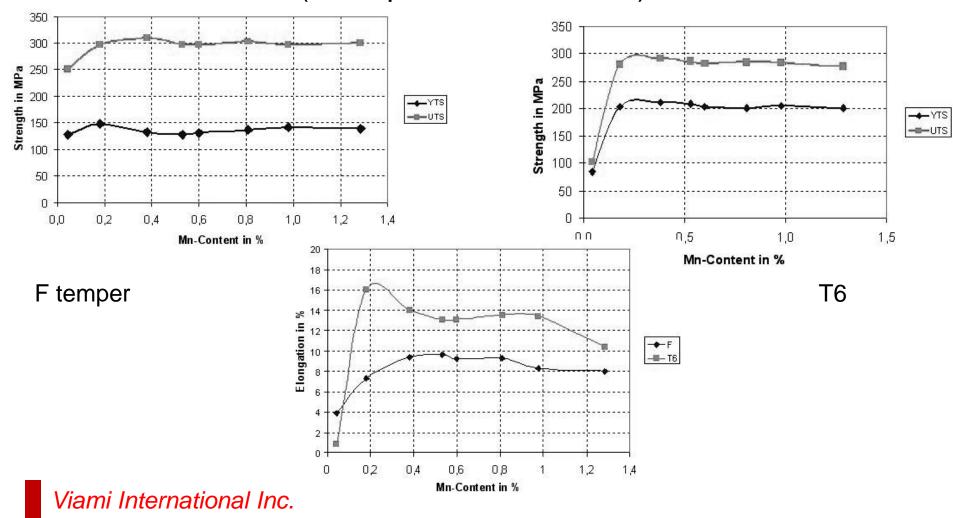
- Silafont[®]-36 (365), Aural[®]-2/-3 (A365) and -5S, Mercalloy[®] (362, 367, 368), Castasil[®]-37, W3, etc.
- Excellent castability, heat treatable, most commonly used and wide variety of alloys commercially available

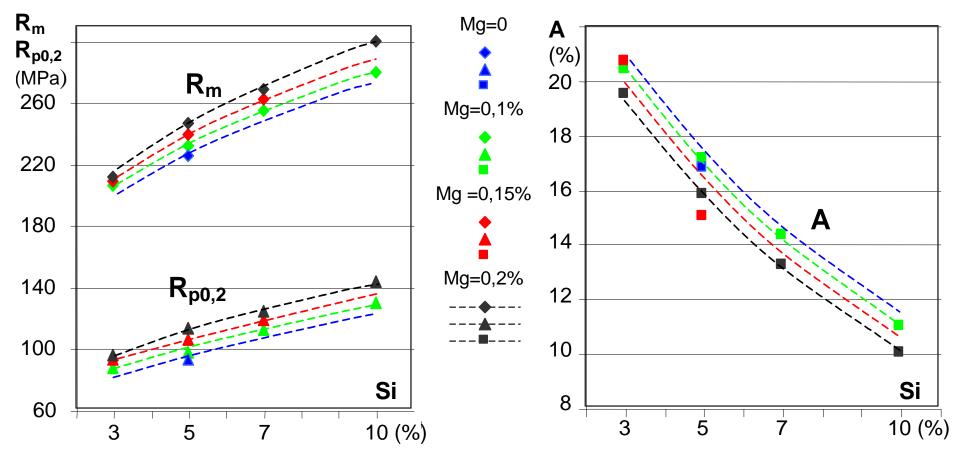

Al-Mg-Si family: Al + 2-5.5%Mg + 1.5-3%Si

- Magsimal[®]-59, C446, Aural[®]-11, Calypso 53 & 54SM, etc.
- Excellent properties as cast and in T5 temper
- Difficult to cast, properties extremely wall thickness dependent, require Be, hot tear and SCC susceptible

The key role of each element:

- $Si \Rightarrow$ higher silicon content alloy promotes fluidity & castability
- $Mg \Rightarrow imparts strength$
- $Fe \Rightarrow$ helps reduce solder but impacts negatively ductility
- $\mbox{Mn} \Rightarrow \mbox{higher}\xspace$ manganese content helps minimize solder and corrects Fe phase
- Ti \Rightarrow used as a grain refiner
- $Cu \Rightarrow$ lower copper content of the alloy imparts higher corrosion resistance (usually strengthening element)
- $Sr \Rightarrow$ helps modify the eutectic silicon, thereby improving ductility of the alloy also helps beat die soldering

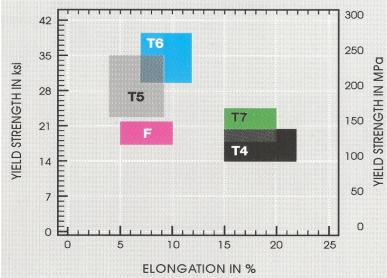

Effect of Iron on Fatigue Curve for XK360 [100X life @0.001 strain]


Curve fills generaled using ASTM E 739-91 practices.

Courtesy of Mercury Marine

The influence of Mn (replacing Fe) mechanical properties (example of Silafont[®] 36)

The influence of Si and Mg on mechanical properties in the F temper



AA 365 - Silafont 36 (Rheinfelden)

Alloy denomination

Chemical denomination: AISi9MgMn

Numerical denomination: 43 500

Composition [% of mass]

	Si	Fe	Cu	Mn	Mg	Zn	Ti	other
9.5	-11.5	0.15	0.03	0.5-0.8	0.1 - 0.5	0.07	0.15	Sr

Mechanical properties

Casting method	Treatment state	Yield tensile strength R _{p0.2} [N/mm ²]	Ultimate tensile strength R _m [N/mm ²]	Elongation A [%]	Brinell hardness HBW
High press. die casting	F	120-150	250-290	5-11	75-95
High press. die casting	Τ5	155-245	275-340	4-9	80-110
High press. die casting	T4	95-140	210-260	15-22	60-75
High press. die casting	T6	210-280	290-340	7-12	90-110
High press. die casting	Τ7	120-170	200-240	15-20	60-75

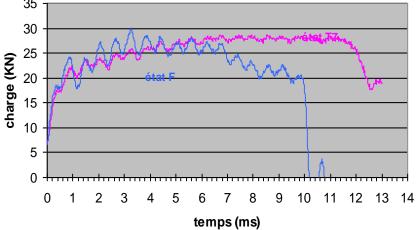
AA A365 – Aural-2 & 3 (Magna-Cosma)

Mechanical Properties of Aural alloys

	Mg	Si	Fe		Mn	Ti	Cu	1	Sr	Others	
	%	%	%		%	%	%	,	(PPM)	%	
Aural 2	0.27 – 0.33	7 - 0.33 9.5 - 11.5 0.15 - 0		0.22 0.45 - 0.55		max 0.08	max 0.08 max 0		100–160	each 0.03 total 0.1	
Aural 3	0.4 – 0.6	9.5 – 11.5	0.15 – 0.22		0.45 – 0,55	max 0.08	max ().03	100–160	each 0.03 total 0.1	
Aural 4	0.40-0.50	4.0-4.5	0.15-0.20		0.45 - 0.80	max 0.08	max 0).03	40-70	each 0.03 total 0.1	
"A-Alloy"	0.15-0.40	7.5-8.5	7.5-8.5 0.15-0.20		0.45 – 0,55	Max 0.08	max 0.03		50-100	each 0.03 total 0.1	
		R _m [Mpa]		RP	9 _{0,2} [Mpa]	A 5 [A ₅ [%]		Condition		
		250 –	310		120 - 150	5 -1	5 -10		F		
	Aural 2	270-3	270-300		150-190	6.5 -	6.5 - 9		T5		
		200 –	220	120 – 140		14 –	14 – 18		Auraltherm – 2		
		250 -	310		130 – 160	4 –	8		F		
	Aural 3	300-3	340		190-240	4 - 6	.5		T5		
		210 –	280	140 – 220		6 – 2	6 – 14		Auraltherm – 3		
		219	219		103	17		F			
	Aural 4 [†]	22	221		112	16		T5			
	[†] SSF Properties	260-3	300		170-235	9-1	7		Т6		
<u> </u>	"A-Alloy"	250-2	270		110-150	8-1	2	F			
С.		270-3	300		150-190	5-8	5-8		T5		

Alloys for high integrity diecastings Mercalloy 367

Alloy 367.0												
Alloy 367.0–Chemical Composition Limits												
Si	Fe	Cu	Mn	Mg	Cr	Ni	Zn	Ti	Sr		lements	
										Each	Total	
8.5-9.5	0.25	0.25	0.25-0.35	0.30-0.50			0.10	0.10 0.20 0.05-		0.05	0.15	
				Typical Ter	nsile P	ropertie	s at 0.40%	Mg	-			
Casting Process and TemperAging Time and TemperatureUltimate Stre ksi (MPa							•		eld Strength ksi (MPa)	Elong	gation (%)	
Die Cast	Die Cast 367.0—F		as	cast		39.3 (270)			16.6 (115)		8.1	
Die Cast	Die Cast 367.0—T5		2 houi	r at 170C		42.8 (295)		2	24.5 (170)		5.0	
Die Cast	367.0—	Г5	4 houi	r at 170C		43.	9 (300)	2	27.8 (190)		6.7	
Die Cast	367.0—	Г5	6 houi	r at 170C		45	5 (310)		29 (200)		8.2	
Die Cast	367.0—	Г5	8 hour at 170C			45 (310)			30 (205)		9.0	
Die Cast	367.0—	Г4 З	3 hr at 490C + water quench			35.6 (245)		2	21.6 (150)		15	
Die Cast	Die Cast 367.0—T6		2 hour at 170C			43 (295)		3	33.2 (230)		10.3	
Die Cast	Die Cast 367.0—T6		4 houi	r at 170C		45 (310)			35 (240)		8	
Die Cast 367.0—T6 6		6 houi	rat 170C		43.4 (300)		3	35.3 (245)		7.8		
Die Cast	367.0—	Г6	8 houi	r at 170C		41.4 (285)		3	33.4 (230)		9.5	


Alloys for high integrity diecastings Mercalloy 368 & 362

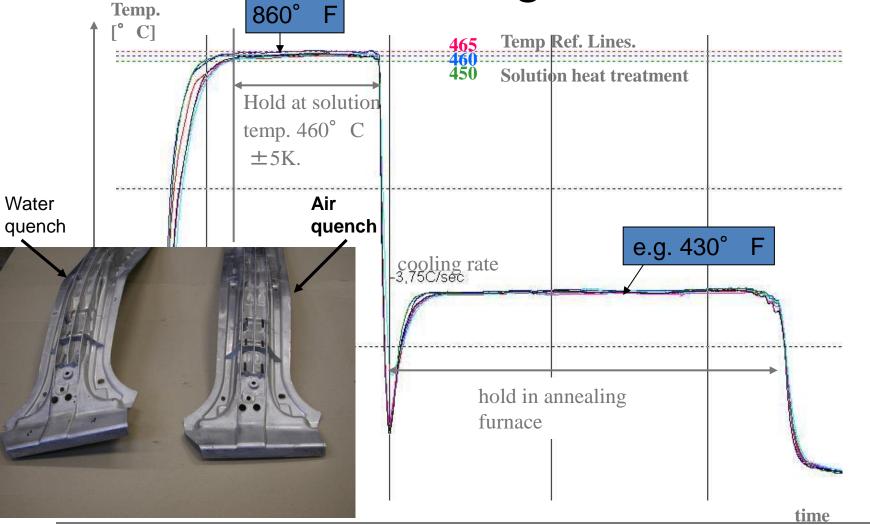
Alloy 368.0														
Alloy 368.0–Chemical Composition Limits														
Si	Fe		Cu Mn		Mg		Cr	Ni	Zn	Т	i Sr	. L		Elements
			ou		- mg		01			'	_		Each	Total
8.5-9.5	0.25	5	0.25	0.25-0.3	35 0.10-0	.30			0.10	0.2	20 0.0 0.0	-	0.05	0.15
				Туріс	cal Mechar	nical	Prope			₀ Mg*				
Casting P	Process		aina Tir	no and				Ten	sion				En	durance
and Tei		s Aging Time and Temperature		Ultimate	Ultimate Strength		Yield Strength			Elong	Elongation		Limit	
	inper		remper	ature	ksi (MPa)	k	si (MP	a)	(%	6)	Ks	si (Mpa)
Die Cast 3	368.0F		as ca	ast	38-40 (260-275)		18-2	18-20 (125-140)		10-	10-12		21 (145)	
Die Cast 3	68.0T6		6 hr at 3	320 F	41-43 (280-295)		27-29 (185-200)		14-	14-16		20 (140)		
						Allo	oy 362.	0						
				Allo	y 362.0–C	hemi	cal Co	mposit	ion Li	mits				
Si	Fe	Cu		Mn	Mg	Ma Cr Ni			n	Ti	Sr –		Other E	lements
31	re	Cu		VIII	INIG				1	11	31	E	ach	Total
10.5-11.5	0.25	0.20	0 0.2	5-0.35	0.50-0.7		0.10	-	-).20	0.05-0.07	7 (0.05 0.15	
				Туріс	cal Mechar	nical	Prope			₀ Mg*				
Casting Pr	Casting Process and Aging Time and				4	Tension					-	Endurance Limit		
	Temper		Temperature		Ultimat	Ultimate Strength ksi (MPa)		Yield Strength ksi (MPa)		Elongation (%)		Ksi (Mpa)		
Die Cast 362.0F as			as	cast	38-40 (260-275)		18-20 (125-140)			9-11		21 (145)		
Die Cast	362.0T	6	6 hr a	at 320 F	43-46	(295	-315)	33-3	6 (230)-250)	14-1	6	20	(140)

Alloys for high integrity diecastings Example: CALYPSO 61D (AI Si10MgMnFe) : Difference between crash behaviours in T7 and F

Courbe de crash dynamique

Force vs time curves, T7 and F conditions

Condition	YS	UTS	Elongation %
F	120 ~ 140	270 ~ 290	10 ~ 12
Τ7	155 ~ 165	215 ~ 225	14 ~18


Alloys for high integrity diecastings Example: CALYPSO 61D (AI Si10MgMnFe) : Difference between crash behaviours in T7 and F

Τ7

F

Heat treatment of high integrity die castings

Where could I do R&D in this field?

Examples: Delaware Dynamics, Muncie, IN Diecasting R&D center with 1600t, 2000t and 3500t HPDC machines

Viami International Inc.

Canmet MATERIALS A national laboratory of Natural Resources Canada, Hamilton, ON 1200t HPDC machine

Summary

- Traditional diecasting processes had difficulty in achieving high integrity (low porosity) castings and were therefore unusable for structural applications
- Traditional diecasting has relied upon high levels of Fe in AI to reduce die soldering. As known, Fe also destroys mechanical properties (especially elongation)
- New diecasting processes applying process control, high vacuum, proper die design, etc. and new alloys allow production of diecastings with high quality / mechanical properties (heat treatable, weldable, crash worthy, high fatigue life, etc.)
- The inherent advantages of diecasting (high freezing rate, thin walls, high precision, etc.) can now be used to produce high quality structural castings at competitive costs.

VIAMI INTERNATIONAL INC.

Questions?

VIAMI INTERNATIONAL INC. 267 Rue Alice Carriere Beaconsfield, Quebec, H9A 6E6 Canada Tel. & Fax. +1 514 426 1814 <u>martin.hartlieb@viami.ca</u> www.viami.ca